
Spreadsheet Link™ EX

User's Guide

R2015b

How to Contact MathWorks

Latest news: www.mathworks.com

Sales and services: www.mathworks.com/sales_and_services

User community: www.mathworks.com/matlabcentral

Technical support: www.mathworks.com/support/contact_us

Phone: 508-647-7000

The MathWorks, Inc.
3 Apple Hill Drive
Natick, MA 01760-2098

Spreadsheet Link™ EX User's Guide
© COPYRIGHT 1996–2015 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or
reproduced in any form without prior written consent from The MathWorks, Inc.
FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation
by, for, or through the federal government of the United States. By accepting delivery of the Program
or Documentation, the government hereby agrees that this software or documentation qualifies as
commercial computer software or commercial computer software documentation as such terms are used
or defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and
conditions of this Agreement and only those rights specified in this Agreement, shall pertain to and
govern the use, modification, reproduction, release, performance, display, and disclosure of the Program
and Documentation by the federal government (or other entity acquiring for or through the federal
government) and shall supersede any conflicting contractual terms or conditions. If this License fails
to meet the government's needs or is inconsistent in any respect with federal procurement law, the
government agrees to return the Program and Documentation, unused, to The MathWorks, Inc.

Trademarks

MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand
names may be trademarks or registered trademarks of their respective holders.
Patents

MathWorks products are protected by one or more U.S. patents. Please see
www.mathworks.com/patents for more information.

www.mathworks.com
www.mathworks.com/sales_and_services
www.mathworks.com/matlabcentral
www.mathworks.com/support/contact_us
http://www.mathworks.com/trademarks
http://www.mathworks.com/patents

Revision History

May 1996 First printing New for Version 1.0
May 1997 Second printing Revised for Version 1.0.3
January 1999 Third printing Revised for Version 1.0.8 (Release 11)
September 2000 Fourth printing Revised for Version 1.1.2
April 2001 Fifth printing Revised for Version 1.1.3
July 2002 Sixth printing Revised for Version 2.0 (Release 13)
September 2003 Online only Revised for Version 2.1 (Release 13SP1)
June 2004 Online only Revised for Version 2.2 (Release 14)
September 2005 Online only Revised for Version 2.3 (Release 14SP3)
March 2006 Online only Revised for Version 2.3.1 (Release 2006a)
September 2006 Online only Revised for Version 2.4 (Release 2006b)
September 2006 Seventh printing Revised for Version 2.4 (Release 2006b)
March 2007 Online only Revised for Version 2.5 (Release 2007a)
September 2007 Online only Revised for Version 3.0 (Release 2007b)
March 2008 Online only Revised for Version 3.0.1 (Release 2008a)
October 2008 Online only Revised for Version 3.0.2 (Release 2008b)
March 2009 Online only Revised for Version 3.0.3 (Release 2009a)
September 2009 Online only Revised for Version 3.1 (Release 2009b)
March 2010 Online only Revised for Version 3.1.1 (Release 2010a)
September 2010 Online only Revised for Version 3.1.2 (Release 2010b)
April 2011 Online only Revised for Version 3.1.3 (Release 2011a)
September 2011 Online only Revised for Version 3.1.4 (Release 2011b)
March 2012 Online only Revised for Version 3.1.5 (Release 2012a)
September 2012 Online only Revised for Version 3.1.6 (Release 2012b)
March 2013 Online only Revised for Version 3.1.7 (Release 2013a)
September 2013 Online only Revised for Version 3.2 (Release 2013b)
March 2014 Online only Revised for Version 3.2.1 (Release 2014a)
October 2014 Online only Revised for Version 3.2.2 (Release 2014b)
March 2015 Online only Revised for Version 3.2.3 (Release 2015a)
September 2015 Online only Revised for Version 3.2.4 (Release 2015b)

v

Contents

Getting Started
1

Spreadsheet Link EX Product Description 1-2
Key Features . 1-2

Microsoft Excel and MATLAB Interaction 1-3

Installation . 1-4
Product Installation . 1-4
Files and Folders Created by the Installation 1-4
After You Upgrade the Spreadsheet Link EX Software 1-5

Add-In Setup . 1-6
Configure Microsoft Excel 2003 and Earlier 1-6
Configure Microsoft Excel 2007 and Later 1-7
Work with the Microsoft Visual Basic Editor 1-11

Set Spreadsheet Link EX Preferences and MATLAB
Version . 1-12

Set Spreadsheet Link EX Preferences 1-12
Set the MATLAB Version . 1-13

Start and Stop Spreadsheet Link EX and MATLAB 1-14
Start Spreadsheet Link EX and MATLAB Automatically . . . 1-14
Start Spreadsheet Link EX and MATLAB Manually 1-14
Connect to an Already Running MATLAB Session 1-14
Specify the MATLAB Startup Folder 1-15
Stop Spreadsheet Link EX and MATLAB 1-16

Work with MATLAB Functions in Microsoft Excel 1-17
Differences Between Spreadsheet Link EX and Microsoft Excel

Functions . 1-17
Spreadsheet Link EX Function Types 1-17

vi Contents

Use Spreadsheet Link EX Functions with Microsoft Excel 2007
and Later . 1-18

Use Worksheets . 1-21
Work with Arguments . 1-22
Use Spreadsheet Link EX Functions in Macros 1-23

Work with the MATLAB Function Wizard 1-27
Work with MATLAB Functions . 1-28
Work with Custom MATLAB Functions 1-30

Run a MATLAB Function with Multiple Output Arguments 1-33

Work with Dates . 1-36

Localization Information . 1-37

Solving Problems with the Spreadsheet Link EX
Software

2
Model Data Using Regression and Curve Fitting 2-2

Using Worksheets . 2-2
Using Macros . 2-6

Interpolate Data . 2-11

Price Stock Options Using the Binomial Model 2-15

Compute Efficient Frontier of Financial Portfolios 2-19

Map Time and Bond Cash Flows . 2-24

Error Messages and Troubleshooting
3

Worksheet Cell Errors . 3-2

vii

Microsoft Excel Errors . 3-5

Data Errors . 3-8
Matrix Data Errors . 3-8
Errors When Opening Saved Worksheets 3-8

License Errors . 3-10

Startup Errors . 3-11

Audible Error Signals . 3-12

Functions — Alphabetical List
4

1

Getting Started

• “Spreadsheet Link EX Product Description” on page 1-2
• “Microsoft Excel and MATLAB Interaction” on page 1-3
• “Installation” on page 1-4
• “Add-In Setup” on page 1-6
• “Set Spreadsheet Link EX Preferences and MATLAB Version” on page 1-12
• “Start and Stop Spreadsheet Link EX and MATLAB” on page 1-14
• “Work with MATLAB Functions in Microsoft Excel” on page 1-17
• “Work with the MATLAB Function Wizard” on page 1-27
• “Run a MATLAB Function with Multiple Output Arguments” on page 1-33
• “Work with Dates” on page 1-36
• “Localization Information” on page 1-37

1 Getting Started

1-2

Spreadsheet Link EX Product Description
Use MATLAB from Microsoft Excel

Spreadsheet Link EX connects Excel® spreadsheet software with the MATLAB®

workspace, enabling you to access the MATLAB environment from an Excel spreadsheet.
With Spreadsheet Link EX software, you can exchange data between MATLAB and
Excel, taking advantage of the familiar Excel interface while accessing the computational
speed and visualization capabilities of MATLAB.

Key Features

• Data preprocessing, editing, and viewing in the familiar Excel environment
• Sophisticated analysis of Excel data using MATLAB and application toolboxes
• Delivery of Excel based applications, using MATLAB as a computational and graphics

engine and Excel as an interface
• Interactive selection of available functions using the MATLAB Function Wizard
• Visual interface for customization of all Spreadsheet Link EX preferences

 Microsoft Excel and MATLAB Interaction

1-3

Microsoft Excel and MATLAB Interaction

Spreadsheet Link EX Add-In integrates the Microsoft Excel and MATLAB products in a
computing environment running Microsoft Windows®. It connects the Excel interface to
the MATLAB workspace, enabling you to use Excel worksheet and macro programming
tools to leverage the numerical, computational, and graphical power of MATLAB.

You can use Spreadsheet Link EX functions in an Excel worksheet or macro to
exchange and synchronize data between Excel and MATLAB, without leaving the Excel
environment. With a small number of functions to manage the link and manipulate data,
the Spreadsheet Link EX software is powerful in its simplicity.

Note: This documentation uses the terms worksheet and spreadsheet interchangeably.

The Spreadsheet Link EX software supports MATLAB two-dimensional numeric arrays,
one-dimensional character arrays (strings), and two-dimensional cell arrays. It does not
work with MATLAB multidimensional arrays and structures.

Related Examples
• “Work with MATLAB Functions in Microsoft Excel” on page 1-17

1 Getting Started

1-4

Installation

In this section...

“Product Installation” on page 1-4
“Files and Folders Created by the Installation” on page 1-4
“After You Upgrade the Spreadsheet Link EX Software” on page 1-5

Product Installation

Install the Microsoft Excel product before you install the MATLAB and Spreadsheet Link
EX software. To install the Spreadsheet Link EX Add-In, follow the instructions in the
MATLAB installation documentation. Select the Spreadsheet Link EX check box when
choosing components to install.

Notes: If you have several versions of MATLAB installed on your computer, Spreadsheet
Link EX uses the version that you registered last.

To install the Spreadsheet Link EX Add-In, you need administrator system privileges on
the computer. Contact your system administrator to enable these privileges.

Files and Folders Created by the Installation

Note: The MATLAB root folder, matlabroot, is where MATLAB is installed on your
system.

The Spreadsheet Link EX installation program creates a subfolder under
matlabroot\toolbox\. The exlink folder contains these files:

• excllink2003.xla: The Spreadsheet Link EX Add-In for Microsoft Excel 2003 and
earlier

• excllink.xlam: The Spreadsheet Link EX Add-In for Microsoft Excel 2007 and
later

• ExliSamp.xls: Spreadsheet Link EX example files described in this documentation

 Installation

1-5

Spreadsheet Link EX uses Kernel32.dll, which should already be in the appropriate
Windows system folder (for example, C:\Winnt\system32). If not, consult your system
administrator.

After You Upgrade the Spreadsheet Link EX Software

If MATLAB and Spreadsheet Link EX are installed on your computer, to upgrade to a
newer version:

1 Install the new version of MATLAB and Spreadsheet Link EX.
2 Start MATLAB and a Microsoft Excel session.
3 Configure the Spreadsheet Link EX software. For details, see “Add-In Setup” on

page 1-6.
4 If you have existing workbooks with macros that use Spreadsheet Link EX, update

references to Spreadsheet Link EX in each workbook.

To update the references in an existing workbook in Microsoft Excel 2003 and earlier:

1 In a Microsoft Excel session, open the Visual Basic® Editor window by selecting
Tools > Macros > Visual Basic Editor.

2 In the left pane, select a module for which you want to update a reference.
3 From the main menu, select Tools > References.
4 In the References dialog box, select the SpreadsheetLinkEX check box.
5 Click OK.

To update the references in an existing workbook in Microsoft Excel 2007 and later:

1 In a Microsoft Excel session, open the Visual Basic Editor window by clicking Visual
Basic on the Developer tab. (If you do not find the Developer tab, see the Excel
Help.)

2 In the left pane, select a module for which you want to update a reference.
3 From the main menu, select Tools > References.
4 In the References dialog box, select the SpreadsheetLink2007_2010 check box.
5 Click OK.

More About
• “Add-In Setup” on page 1-6

1 Getting Started

1-6

Add-In Setup

In this section...

“Configure Microsoft Excel 2003 and Earlier” on page 1-6
“Configure Microsoft Excel 2007 and Later” on page 1-7
“Work with the Microsoft Visual Basic Editor” on page 1-11

Configure Microsoft Excel 2003 and Earlier

To enable the Spreadsheet Link EX Add-In:

1 Start Microsoft Excel.
2 Select Tools > Add-Ins. The Add-Ins dialog box opens.
3 Click Browse.
4 Select matlabroot\toolbox\exlink\excllink2003.xla.

Note: Throughout this document the notation matlabroot is the MATLAB root
folder, which is where MATLAB is installed on your system.

5 Click OK.

In the Add-Ins dialog box, the Spreadsheet Link EX for use with MATLAB check
box is selected.

6 Click OK to close the Add-Ins dialog box.

The Spreadsheet Link EX Add-In loads now and with each subsequent Excel session.

The MATLAB Command Window button appears on the Microsoft Windows taskbar.

The Spreadsheet Link EX toolbar appears on your Excel worksheet.

 Add-In Setup

1-7

Spreadsheet Link EX is ready for use.

Configure Microsoft Excel 2007 and Later

To enable the Spreadsheet Link EX Add-In, start a Microsoft Excel session and follow
these steps.

If you use Microsoft Excel 2007:

1

Click , the Microsoft Office button.
2 Click Excel Options. The Excel Options dialog box opens.

If you use Microsoft Excel 2010 and later versions:

1 Select File from the main menu.
2 Click Options. The Excel Options dialog box opens.

The next steps are the same for both versions:

1 Click Add-Ins.

1 Getting Started

1-8

2 From the Manage selection list, choose Excel Add-Ins.
3 Click Go. The Add-Ins dialog box opens.
4 Click Browse.
5 Select matlabroot\toolbox\exlink\excllink.xlam.
6 Click Open. In the Add-Ins dialog box, the Spreadsheet Link EX for use with

MATLAB and Excel check box is selected.

7 Click OK to close the Add-Ins dialog box.
8 Click OK to close the Excel Options dialog box.

The Spreadsheet Link EX Add-In loads now and with each subsequent Excel session.

The MATLAB Command Window button appears on the Microsoft Windows taskbar.

 Add-In Setup

1-9

The MATLAB group appears on the top right of the Home tab in your Excel worksheet.

Spreadsheet Link EX is ready for use.

Right-click a cell to list the MATLAB options.

1 Getting Started

1-10

 Add-In Setup

1-11

Caution Simultaneously using Add-Ins for 2003 and 2007 and later, referenced in Excel
2007 and later, causes problems with the context-sensitive menu. Use only one Add-In at
a time to avoid this issue.

Work with the Microsoft Visual Basic Editor

To enable Spreadsheet Link EX as a Reference in the Microsoft Visual Basic Editor:

1 Open a Visual Basic session.

• If you are running Excel 2003, select Tools > Macro > Visual Basic Editor.
• If you are running Excel 2007 and later, click the Visual Basic button on the

Developer tab, or press Alt+F11.

Note: For instructions about displaying the Developer tab, see Excel Help.
2 In the Visual Basic toolbar, select Tools > References.
3 In the References — VBA Project dialog box, select the SpreadsheetLinkEX or

SpreadsheetLink2007_2010 check box.
4 Click OK.

See Also
matlabroot

More About
• “Installation” on page 1-4

1 Getting Started

1-12

Set Spreadsheet Link EX Preferences and MATLAB Version

In this section...

“Set Spreadsheet Link EX Preferences” on page 1-12
“Set the MATLAB Version” on page 1-13

Set Spreadsheet Link EX Preferences

Use the Preferences dialog box to set Spreadsheet Link EX preferences. Click the
preferences button in the Excel toolbar or MATLAB group to open this dialog box.

Preferences include:

• Start MATLAB at Excel startup starts a MATLAB session automatically when an
Excel session starts. By default, this option is enabled.

 Set Spreadsheet Link EX Preferences and MATLAB Version

1-13

• MATLAB startup folder lets you specify the startup folder for your MATLAB
session.

• Use MATLAB desktop starts the MATLAB desktop, including the current folder,
workspace, command history, and Command Window panes, when an Excel session
starts.

• Show MATLAB errors displays MATLAB error messages in Excel worksheet cells.
Without this option, worksheet cells display Excel error messages. See “Worksheet
Cell Errors” on page 3-2.

• Force use of MATLAB cell arrays with MLPutMatrix enables the MLPutMatrix
function to use cell arrays for data transfer between Excel and the MATLAB
workspace.

• Treat missing/empty cells as NaN sets data in missing or empty cells to NaN or
zero.

Set the MATLAB Version

If there are several versions on MATLAB installed on your computer, the Spreadsheet
Link EX software uses the last registered version. Typically, the last registered version is
the latest version you have installed. To change the last registered version of MATLAB:

1 Shut down all MATLAB and Excel sessions.
2 Open a Command Prompt window, and using cd, change to the bin\win64 or bin

\win32 subfolder of the MATLAB installation folder.
3 Enter the command:

.\matlab /regserver

1 Getting Started

1-14

Start and Stop Spreadsheet Link EX and MATLAB

In this section...

“Start Spreadsheet Link EX and MATLAB Automatically” on page 1-14
“Start Spreadsheet Link EX and MATLAB Manually” on page 1-14
“Connect to an Already Running MATLAB Session” on page 1-14
“Specify the MATLAB Startup Folder” on page 1-15
“Stop Spreadsheet Link EX and MATLAB” on page 1-16

Start Spreadsheet Link EX and MATLAB Automatically

When installed and configured according to the instructions in “Add-In Setup” on page
1-6, the Spreadsheet Link EX and MATLAB software automatically start when you start
a Microsoft Excel session.

Start Spreadsheet Link EX and MATLAB Manually

1 Select Tools > Macro.

• In Excel 2007, click the View or Developer tab, and then click the Macros
button.

• In Excel 2010, click the View menu and select Macros on the Excel toolstrip, and
then click View Macros.

2 Enter matlabinit into the Macro Name/Reference field.
3 Click Run. The MATLAB Command Window button appears on the Microsoft

Windows taskbar.

Connect to an Already Running MATLAB Session

By default, Spreadsheet Link EX starts a new MATLAB session. Alternatively, it can
connect to an already running MATLAB session.

Note: If several versions of MATLAB are installed on your computer, Spreadsheet Link
EX always uses the last registered version. If you try to connect to an already running
MATLAB session that is not the last registered version, Spreadsheet Link EX starts a

 Start and Stop Spreadsheet Link EX and MATLAB

1-15

new MATLAB session. Spreadsheet Link EX does not connect to the existing one. To
change the last registered version, see “Set the MATLAB Version” on page 1-13.

To connect a new Excel session to an already running MATLAB session:

1 In MATLAB, enter the following command:

enableservice('AutomationServer',true)

This command converts a running MATLAB session into an Automation server.
2 Start a new Excel session. It automatically connects to the running MATLAB

session.

Alternatively, you can start MATLAB as an automation server from the beginning. To
start MATLAB as an automation server, use the automation command-line option:

matlab -automation

This command does not start MATLAB in a full desktop mode. To do so, use the -
desktop option:

matlab -automation -desktop

If you always use MATLAB as an automation server, modify the shortcut that you use to
start MATLAB:

1 Right-click your MATLAB shortcut icon. (You can use the icon on your desktop or in
the Windows Start menu.)

2 Select Properties.
3 Click the Shortcut tab.
4 Add the string -automation in the Target field. Remember to leave a space

between matlab.exe and /automation.
5 Click OK.

Specify the MATLAB Startup Folder

MATLAB starts in the MATLAB root folder and completes the initialization. After
starting, MATLAB changes to the Spreadsheet Link EX MATLAB startup folder. For
details about specifying the startup folder, see MLStartDir.

1 Getting Started

1-16

Stop Spreadsheet Link EX and MATLAB

If you started the Spreadsheet Link EX and MATLAB software from the Excel interface:

• To stop both the Spreadsheet Link EX and MATLAB software, close the Excel session
as you normally would.

• To stop the Spreadsheet Link EX and MATLAB software and leave the Excel session
running, enter the =MLClose() command into an Excel worksheet cell. You can
use the MLOpen or matlabinit function to restart the Spreadsheet Link EX and
MATLAB sessions manually.

If you connected an Excel session to an existing MATLAB session, close Excel and
MATLAB sessions separately. Closing one session does not automatically close the other.

 Work with MATLAB Functions in Microsoft Excel

1-17

Work with MATLAB Functions in Microsoft Excel

In this section...

“Differences Between Spreadsheet Link EX and Microsoft Excel Functions” on page
1-17
“Spreadsheet Link EX Function Types” on page 1-17
“Use Spreadsheet Link EX Functions with Microsoft Excel 2007 and Later” on page
1-18
“Use Worksheets” on page 1-21
“Work with Arguments” on page 1-22
“Use Spreadsheet Link EX Functions in Macros” on page 1-23

Differences Between Spreadsheet Link EX and Microsoft Excel Functions

• Spreadsheet Link EX functions perform an action, while Microsoft Excel functions
return a value.

• Spreadsheet Link EX function names are not case-sensitive; that is, MLPutMatrix
and mlputmatrix are the same.

• MATLAB function names and variable names are case-sensitive; that is, BONDS,
Bonds, and bonds are three different MATLAB variables.

Note: Excel operations and function keys might behave differently with Spreadsheet
Link EX functions.

Spreadsheet Link EX Function Types

Spreadsheet Link EX functions manage the connection and data exchange between
the Excel software and the MATLAB workspace, without your ever needing to leave
the Excel environment. You can run functions as worksheet cell formulas or in macros.
The Spreadsheet Link EX software enables Excel to act as an easy-to-use data-storage
and application-development front end for the MATLAB software, which is a powerful
computational and graphical processor.

There are two types of Spreadsheet Link EX functions: link management functions and
data management functions.

1 Getting Started

1-18

Link management functions initialize, start, and stop the Spreadsheet Link EX and
MATLAB software. You can run any link management function other than matlabinit
as a worksheet cell formula or in macros. Run the matlabinit function from the Excel
Tools > Macro menu, or in macro subroutines.

Data management functions copy data between the Excel software and the MATLAB
workspace, and execute MATLAB commands in the Excel interface. You can run any
data management function other than MLPutVar and MLGetVar as a worksheet cell
formula or in macros. The MLPutVar and MLGetVar functions can run only in macros.

Use Spreadsheet Link EX Functions with Microsoft Excel 2007 and Later

Execute a Function from the Microsoft Excel Ribbon

This example shows how to use the function mlputranges from the Microsoft Excel
Ribbon.

1 Start Microsoft Excel and start MATLAB.
2 Name and select a range in the worksheet.
3 Select Send named ranges to MATLAB using the MATLAB group that appears on

the top right of the Home tab in your Excel worksheet. When you select this option,
MATLAB executes mlputranges.

 Work with MATLAB Functions in Microsoft Excel

1-19

Microsoft Excel exports the named range into a MATLAB variable.

Execute a Function from a Microsoft Excel Cell

This example shows how to use the function mlputranges from a cell in the worksheet.

1 Start Microsoft Excel and start MATLAB.
2 Name and select a range in the worksheet.
3 Right-click a cell to list the MATLAB options.

1 Getting Started

1-20

 Work with MATLAB Functions in Microsoft Excel

1-21

4 Select MATLAB > Send named ranges to MATLAB. When you select this option,
MATLAB executes mlputranges.

Microsoft Excel exports the named range into a MATLAB variable.

Use Worksheets

Enter Functions into Worksheet Cells

Spreadsheet Link EX functions expect A1-style worksheet cell references, that is,
columns designated with letters and rows with numbers (the default reference style). If
your worksheet shows columns designated with numbers instead of letters:

1 Select Tools > Options.
2 Click the General tab.
3 Under Settings, clear the R1C1 reference style check box.

Enter Spreadsheet Link EX functions directly into worksheet cells as worksheet
formulas. Begin worksheet formulas with + or = and enclose function arguments in
parentheses. The following example uses MLPutMatrix to put the data in cell C10 into
matrix A:

=MLPutMatrix("A", C10)

For more information on specifying arguments in Spreadsheet Link EX functions, see
“Work with Arguments” on page 1-22.

Caution: Do not use the Excel Function Wizard. It can generate unpredictable results.

After a Spreadsheet Link EX function successfully executes as a worksheet formula, the
cell contains the value 0. While the function executes, the cell might continue to show the
formula that you entered.

To change the active cell when an operation completes, select Excel Tools Options >
Edit > Move Selection after Enter. This action provides a useful confirmation for
lengthy operations.

Automatic Calculation Mode vs. Manual Calculation Mode

Spreadsheet Link EX functions are most effective in automatic calculation mode. To
automate the recalculation of a Spreadsheet Link EX function, add to it a cell whose

1 Getting Started

1-22

value changes. In the following example, the MLPutMatrix function executes again when
the value in cell C1 changes:

=MLPutMatrix("bonds", D1:G26) + C1

Caution: Be careful to avoid creating endless recalculation loops.

To use MLGetMatrix in manual calculation mode:

1 Enter the function into a cell.
2 Press F2.
3 Press Enter. The function executes.

Spreadsheet Link EX functions do not automatically adjust cell addresses. If you use
explicit cell addresses in a function, edit the function arguments to reference a new cell
address when you are:

• Inserting or deleting rows or columns.
• Moving or copying the function to another cell.

Note: Pressing F9 to recalculate a worksheet affects only Excel functions. This key does
not operate on Spreadsheet Link EX functions.

Work with Arguments

This section describes tips for managing variable-name arguments and data-location
arguments in Spreadsheet Link EX functions.

Variable-Name Arguments

• You can directly or indirectly specify a variable-name argument in most Spreadsheet
Link EX functions:

• To specify a variable name directly, enclose it in double quotation marks; for
example, MLDeleteMatrix("Bonds").

• To specify a variable name as an indirect reference, enter it without quotation
marks. The function evaluates the contents of the argument to get the variable

 Work with MATLAB Functions in Microsoft Excel

1-23

name. The argument must be a worksheet cell address or range name, for
example, MLDeleteMatrix(C1).

Note: Spreadsheet Link EX functions do not support global variables. When exchanging
data between Excel and MATLAB, the base workspace is used. Variables in the base
workspace exist until you clear them or end your MATLAB session.

Data-Location Arguments

• A data-location argument must be a worksheet cell address or range name.
• Do not enclose a data-location argument in quotation marks (except in MLGetMatrix,

which has unique argument conventions).
• A data-location argument can include a worksheet number; for example, Sheet3!

B1:C7 or Sheet2!OUTPUT.

Tip: You can reference special characters as part of a worksheet name in
MLGetMatrix or MLPutMatrix by embedding the worksheet name within single
quotation marks ('').

Use Spreadsheet Link EX Functions in Macros

About the Examples

These examples show how to manipulate MATLAB data using Spreadsheet Link EX.

• For an example of how to exchange data between the MATLAB and Excel workspaces,
see “Import and Export Data Between Microsoft Excel and the MATLAB Workspace”
on page 1-26.

• For an example of how to export data from the MATLAB workspace and display it
in an Excel worksheet, see “Send MATLAB Data to an Excel Worksheet” on page
1-23.

Send MATLAB Data to an Excel Worksheet

This example shows how to run MATLAB commands using VBA, send MATLAB data to
the Excel software, and display the results in an Excel dialog box.

1 Start an Excel session.

1 Getting Started

1-24

2 Initialize the MATLAB session by clicking the startmatlab button in the
Spreadsheet Link EX toolbar or by running the matlabinit function.

3 If the Spreadsheet Link EX Add-In is not enabled, enable it.

• For instructions on enabling this Add-In for the Excel 2003 software, see
“Configure Microsoft Excel 2003 and Earlier” on page 1-6.

• For instructions on enabling this Add-In for the Excel 2007 software, see
“Configure Microsoft Excel 2007 and Later” on page 1-7.

4 Enable the Spreadsheet Link EX software as a Reference in the Microsoft Visual
Basic Editor. For instructions, see “Work with the Microsoft Visual Basic Editor” on
page 1-11.

5 In the Visual Basic Editor, create a module.

a Right-click the Microsoft Excel Objects folder in the Project — VBAProject
browser.

b Select Insert > Module.
6 Enter the following code into the module window:

Option Base 1

Sub Method1()

 MLShowMatlabErrors "yes"

 '''To MATLAB:

 Dim Vone(2, 2) As Double 'Input

 Vone(1, 1) = 1

 Vone(1, 2) = 2

 Vone(2, 1) = 3

 Vone(2, 2) = 4

 MLPutMatrix "a", Range("A1:B2")

 MLPutVar "b", Vone

 MLEvalString ("c = a*b")

 MLEvalString ("d = eig(c)")

 '''From MATLAB:

 Dim Vtwo As Variant 'Output

 MLGetVar "c", Vtwo

 MsgBox "c is " & Vtwo(1, 1)

 MLGetMatrix "b", Range("A7:B8").Address

 Work with MATLAB Functions in Microsoft Excel

1-25

 MatlabRequest

 MLGetMatrix "c", "Sheet1!A4:B5"

 MatlabRequest

 Sheets("Sheet1").Select

 Range("A10").Select

 MLGetMatrix "d", ActiveCell.Address

 MatlabRequest

End Sub

Tip: Copy and paste this code into the Visual Basic Editor from the HTML version of
the documentation.

7 Run the code. Press F5 or select Run > Run Sub/UserForm.

The following dialog box appears.

8 Click OK to close the dialog box.

Note: Do not include MatlabRequest in a macro function unless the macro function is
called from a subroutine.

Tip: In macros, leave a space between the function name and the first argument. Do not
use parentheses.

1 Getting Started

1-26

Import and Export Data Between Microsoft Excel and the MATLAB Workspace

• This example uses MLGetMatrix in a macro subroutine to export data from the
MATLAB matrix A into the Excel worksheet Sheet1.

Sub Test1()

 MLGetMatrix "A", "Sheet1!A5"

 MatlabRequest

End Sub

Note: The MatlabRequest function initializes internal Spreadsheet Link EX
variables and enables MLGetMatrix to function in the subroutine.

• This example uses MLPutMatrix in a macro subroutine to import data into the
MATLAB matrix A, from a specified cell range in the Excel worksheet Sheet1.

Sub Test2()

 Set myRange = Range("A1:C3")

 MLPutMatrix "A", myRange

End Sub

See Also
matlabfcn | matlabinit | matlabsub | MLGetMatrix | MLGetVar | MLPutMatrix
| MLPutRanges | MLPutVar | pathtool

Related Examples
• “Configure Microsoft Excel 2003 and Earlier” on page 1-6
• “Configure Microsoft Excel 2007 and Later” on page 1-7
• “Work with the Microsoft Visual Basic Editor” on page 1-11
• “Work with Dates” on page 1-36

 Work with the MATLAB Function Wizard

1-27

Work with the MATLAB Function Wizard
In this section...

“Work with MATLAB Functions” on page 1-28
“Work with Custom MATLAB Functions” on page 1-30

The MATLAB Function Wizard for the Spreadsheet Link EX software lets you browse
MATLAB folders and run functions from the Excel interface.

1 Getting Started

1-28

Work with MATLAB Functions

1 List all MATLAB working folders and function categories.

All folders or categories in the current MATLABPATH appear in the Select a
category field. Click an entry in the list to select it. Each entry in the list appears
as a folder path and a description read from the Contents.m file in that folder. If no
Contents.m file is found, the folder or category display notifies you as follows:

finance\finsupport -(No table of contents file)

To refresh the folder/category list, click Update.
2 Select a particular folder or category, and list functions available for that folder or

category.

After you select a folder or category, the Select a function field displays available
functions for that folder or category. Click a function name to select it.

Tip: The Function Wizard prohibits access to MATLAB constructors and methods.
You can write a wrapper function for a method or a constructor and access that
wrapper.

3 Select a function signature and enter a formula into the current spreadsheet cell.

After you select a function, the Select a function signature field displays available
signatures for that function. Click a function signature to select it.

4 View help information for the selected function.

The Function Help field displays help for the selected function.

When you click a function signature, the Function Arguments dialog box appears.

 Work with the MATLAB Function Wizard

1-29

This dialog box lets you specify the cells that contain input arguments and the cells
where to display outputs. By default, the output of the selected function appears in the
current spreadsheet cell using the Spreadsheet Link EX function matlabfcn. In the
following example, the output appears in the current spreadsheet cell and generates a
MATLAB figure:

=matlabfcn("plot",Sheet1!B2:D4)

Specifying a target range of cells using the Optional output cell(s) field causes
the selected function to appear in the current spreadsheet cell as an argument of
matlabsub. In addition, matlabsub includes an argument that indicates where to write
the output. In the following example, the data from A2 is input to the rand function,
whose target cell is B2:

=matlabsub("rand","Sheet1!B2",Sheet1!A2)

Tip Although the Function Wizard lets you specify multiple output cells, it does not
return multiple outputs. If you specify a range of output cells, the wizard returns the first
output argument starting in the first output cell.

For example, if a function returns two separate elements a and b, and you specify A1:A2
as output cells, the Function Wizard displays element a in cell A1. It discards element

1 Getting Started

1-30

b. If an output is a matrix, the Function Wizard displays all elements of that matrix
starting in the first output cell.

Work with Custom MATLAB Functions

1 In MATLAB, create and save your function. Create a help header in your function
that contains supported function signatures to use with the MATLAB Function
Wizard. For example, write the function that computes the Fibonacci numbers and
save it in the folder Documents\MATLAB:

function f = fibonacci(n)

%FIBONACCI(N) Compute the Nth Fibonacci number.

% N must be a positive integer.

if n < 0

 error('Invalid number.')

elseif n == 0

 f = 0;

elseif n == 1

 f = 1;

else

 f = fibonacci(n - 1) + fibonacci(n - 2);

end;

end

2 Add the folder where you saved the function to the MATLAB search path. To add
the folder to the search path, use the pathtool function or select Set Path in the
MATLAB Toolstrip.

3 In Excel, open the MATLAB Function Wizard and select the folder where you saved
your function.

 Work with the MATLAB Function Wizard

1-31

The Function Wizard does not let you access MATLAB constructors and methods. To
access a method or a constructor from the Function Wizard, write a wrapper function for
that method or constructor. For example, to access the timeseries(DATA) constructor
from the Function Wizard, write the following wrapper function:

function TS = timeseries_wrapper(DATA)

% timeseries_wrapper(DATA) is a wrapper function

% for TIMESERIES(DATA)

1 Getting Started

1-32

% TS = TIMESERIES(DATA) creates a time series object TS using

% data DATA. By default, the time vector ranges from 0 to N-1,

% where N is the number of samples, and has an interval of 1

% second. The default name of the TS object is 'unnamed'.

T = timeseries(DATA);

TS = T.data;

end

 Run a MATLAB Function with Multiple Output Arguments

1-33

Run a MATLAB Function with Multiple Output Arguments
This example shows how to execute a MATLAB function that returns multiple output
arguments in Microsoft Excel using a Microsoft Visual Basic macro. The macro writes
multiple output arguments from the MATLAB workspace to Microsoft Excel cells.

This example calculates the singular value decomposition of a matrix using svd.

1 In the Microsoft Excel cells from A1 through C3, create a range of data. Enter
numbers from 1 through 3 in cells A1 to A3. Enter numbers from 4 through 6 in cells
B1 to B3. Enter numbers from 7 through 9 in cells C1 to C3.

2 Create a Microsoft Visual Basic macro named applysvd. For details about creating
macros, see Excel Help.

Public Sub applysvd()

MLOpen

MLPutMatrix "x", Range("A1:C3")

MLEvalString ("[u,s,v] = svd(x)")

MLGetMatrix "u", "A5"

MLGetMatrix "s", "A9"

MLGetMatrix "v", "A13"

MatlabRequest

MLClose

End Sub

The macro performs these tasks:

• Starts MATLAB.
• Sends the data in the A1 through C3 cell range to the MATLAB workspace and

assigns it to the MATLAB variable x.
• Runs svd with the input argument x and output arguments u, s, and v.

1 Getting Started

1-34

• Individually retrieves data for one output argument into a specific Microsoft
Excel cell while accounting for the size of each output data matrix to avoid
overwriting data. For the first output argument, retrieves the data for the output
argument u into cell A5.

• Closes MATLAB.
3 Run applysvd. MATLAB runs svd and populates the specified cells with data from

the three output arguments.

For details about running macros, see Excel Help.

See Also
MLClose | MLEvalString | MLGetMatrix | MLOpen | MLPutMatrix | svd

 Run a MATLAB Function with Multiple Output Arguments

1-35

Related Examples
• “Work with MATLAB Functions in Microsoft Excel” on page 1-17

1 Getting Started

1-36

Work with Dates

Default Microsoft Excel date numbers represent the number of days that have passed
since January 1, 1900. For example, January 1, 1950 is represented as 18264 in the Excel
software.

However, MATLAB date numbers represent the number of days that have passed since
January 1, 0000, so January 1, 1950 is represented as 712224 in the MATLAB software.
Therefore, the difference in dates between the Excel software and the MATLAB software
is a constant, 693960 (712224 minus 18264).

To use date numbers in MATLAB calculations, apply the 693960 constant as follows:

• Add it to Excel date numbers that are read into the MATLAB software.
• Subtract it from MATLAB date numbers that are read into the Excel software.

Note: If you use the optional Excel 1904 date system, the constant is 695422.

Dates are stored internally in the Excel software as numbers and are unaffected by
locale.

Related Examples
• “Work with MATLAB Functions in Microsoft Excel” on page 1-17

 Localization Information

1-37

Localization Information

This document uses Microsoft Excel with an English (United States) Microsoft
Windows regional setting for illustrative purposes. If you use Spreadsheet Link EX with
a non-English (United States) Windows desktop environment, certain syntactical
elements might not work as illustrated. For example, you might have to replace the
comma delimiter within Spreadsheet Link EX commands with a semicolon or other
operator.

Please consult your Windows documentation to determine which regional setting
differences exist among non-U.S. versions.

Related Examples
• “Set Spreadsheet Link EX Preferences and MATLAB Version” on page 1-12

2

Solving Problems with the
Spreadsheet Link EX Software

• “Model Data Using Regression and Curve Fitting” on page 2-2
• “Interpolate Data” on page 2-11
• “Price Stock Options Using the Binomial Model” on page 2-15
• “Compute Efficient Frontier of Financial Portfolios” on page 2-19
• “Map Time and Bond Cash Flows” on page 2-24

2 Solving Problems with the Spreadsheet Link EX Software

2-2

Model Data Using Regression and Curve Fitting

In this section...

“Using Worksheets” on page 2-2
“Using Macros” on page 2-6

Regression techniques and curve fitting attempt to find functions that describe the
relationship among variables. In effect, they attempt to build mathematical models of a
data set. MATLAB matrix operators and functions simplify this task.

This example shows both data regression and curve fitting. It also executes the same
example in a worksheet version and a macro version. The example uses Microsoft Excel
worksheets to organize and display the data. Spreadsheet Link EX functions copy the
data to the MATLAB workspace, and then executes MATLAB computational and graphic
functions. The macro version also returns output data to an Excel worksheet.

This example is included in the Spreadsheet Link EX product. To run it:

1 Start Excel, Spreadsheet Link EX, and MATLAB sessions.
2 Navigate to the folder matlabroot\toolbox\exlink\.
3 Open the file ExliSamp.xls
4 Execute the example as needed.

Using Worksheets

1 Click the Sheet1 tab on the ExliSamp.xls window. The worksheet for this example
appears.

 Model Data Using Regression and Curve Fitting

2-3

The worksheet contains one named range: A4:C28 is named DATA and contains the
data set for this example.

2 Make E5 the active cell. Press F2; then press Enter to execute the Spreadsheet Link
EX function that copies the sample data set to the MATLAB workspace. The data
set contains 25 observations of three variables. There is a strong linear dependence
among the observations; in fact, they are close to being scalar multiples of each
other.

3 Move to cell E8 and press F2; then press Enter. Repeat with cells E9 and E10. These
Spreadsheet Link EX functions regress the third column of data on the other two
columns, and create the following:

• A single vector y containing the third-column data.
• A three-column matrix A, that consists of a column of ones followed by the rest of

the data.

2 Solving Problems with the Spreadsheet Link EX Software

2-4

4 Execute the function in cell E13. This function computes the regression coefficients
by using the MATLAB back slash (\) operation to solve the (overdetermined)
system of linear equations, A*beta = y.

5 Execute the function in cell E16. MATLAB matrix-vector multiplication produces the
regressed result (fit).

6 Execute the functions in cells E19, E20, and E21. These functions do the following:

a Compare the original data with fit.
b Sort the data in increasing order and apply the same permutation to fit.
c Create a scalar for the number of observations.

7 Execute the functions in cells E24 and E25. Often it is useful to fit a polynomial
equation to data. To do so, you would ordinarily have to set up a system of
simultaneous linear equations and solve for the coefficients. The MATLAB polyfit
function automates this procedure, in this case for a fifth-degree polynomial. The
polyval function then evaluates the resulting polynomial at each data point to
check the goodness of fit (newfit).

8 Execute the function in cell E28. The MATLAB plot function graphs the original
data (blue circles), the regressed result fit (dashed red line), and the polynomial
result (solid green line). It also adds a legend.

 Model Data Using Regression and Curve Fitting

2-5

Since the data is closely correlated but not exactly linearly dependent, the fit curve
(dashed line) shows a close, but not an exact, fit. The fifth-degree polynomial curve,
newfit, is a more accurate mathematical model for the data.

When you finish this version of the example, close the figure window.

2 Solving Problems with the Spreadsheet Link EX Software

2-6

Using Macros

1 Click the Sheet2 tab on ExliSamp.xls. The worksheet for this example appears.

2 Make cell A4 the active cell, but do not execute it yet.

 Model Data Using Regression and Curve Fitting

2-7

Cell A4 calls the macro CurveFit, which you can examine in the Microsoft Visual
Basic environment.

3 While this module is open, make sure that the Spreadsheet Link EX add-in is
enabled.

• If you are using the Excel 2003 software:

a Click Tools > References.
b In the References dialog box, make sure that the excllink.xla check box is

selected. If not, select it.

2 Solving Problems with the Spreadsheet Link EX Software

2-8

c Click OK.
• If you are using the Excel 2007 software:

a
Click the Microsoft Office Button, .

b Click Options. The Excel Options pane appears.
c Click Add-Ins.
d From the Manage selection list, choose Excel Add-Ins.
e Click Go. The Add-Ins pane appears.
f Make sure that the Spreadsheet Link EX for use with MATLAB check

box is selected. If not, select it.

g Click OK to close the Add-Ins pane.
h Click OK to close the Excel Options pane.

 Model Data Using Regression and Curve Fitting

2-9

4 In cell A4 of Sheet2, press F2; then press Enter to execute the CurveFit macro.
The macro does the following:

a Runs the same functions as the worksheet example (in a slightly different
order), including plotting the graph.

b Calls the MLGetMatrix function in the CurveFit macro. This macro copies to
the worksheet the original data y (sorted), the corresponding regressed data
fit, and the polynomial data newfit.

2 Solving Problems with the Spreadsheet Link EX Software

2-10

 Interpolate Data

2-11

Interpolate Data

Interpolation is a process for estimating values that lie between known data points. It is
important for applications such as signal and image processing and data visualization.
MATLAB interpolation functions let you balance the smoothness of data fit with
execution speed and efficient memory use.

This example is included in the Spreadsheet Link EX product. To run it:

1 Start Excel, Spreadsheet Link EX, and MATLAB sessions.
2 Navigate to the folder matlabroot\toolbox\exlink\.
3 Open the file ExliSamp.xls
4 Execute the example as needed.

This example uses a two-dimensional data-gridding interpolation function on
thermodynamic data, where volume has been measured for time and temperature values.
It finds the volume values underlying the two-dimensional, time-temperature function
for a new set of time and temperature coordinates.

The example uses a Microsoft Excel worksheet to organize and display the original data
and the interpolated output data. You use Spreadsheet Link EX functions to copy the
data to and from the MATLAB workspace, and then execute the MATLAB interpolation
function. Finally, you invoke MATLAB graphics to display the interpolated data in a
three-dimensional color surface.

1 Click the Sheet3 tab on ExliSamp.xls. The worksheet for this example appears.

2 Solving Problems with the Spreadsheet Link EX Software

2-12

The worksheet contains the measured thermodynamic data in cells A5:A29, B5:B29,
and C5:C29. The time and temperature values for interpolation are in cells E7:E30
and F6:T6, respectively.

2 Make A33 the active cell. Press F2; then press Enter to execute the Spreadsheet
Link EX function that passes the Time, Temp, and Volume labels to the MATLAB
workspace.

3 Make A34 the active cell. Press F2; then press Enter to execute the Spreadsheet
Link EX function that copies the original time data to the MATLAB workspace.
Move to cell A35 and execute the function to copy the original temperature data.
Execute the function in cell A36 to copy the original volume data.

 Interpolate Data

2-13

4 Move to cell A39 and press F2; then press Enter to copy the interpolation time
values to the MATLAB workspace. Execute the function in cell A40 to copy the
interpolation temperature values.

5 Execute the function in cell A43. griddata is the MATLAB two-dimensional
interpolation function that generates the interpolated volume data using the inverse
distance method.

6 Execute the functions in cells A46 and A47 to transpose the interpolated volume data
and copy it to the Excel worksheet. The data fills cells F7:T30, which are enclosed in
a border.

7 Execute the function in cell A50. The MATLAB software plots and labels the
interpolated data on a three-dimensional color surface, with the color proportional to
the interpolated volume data.

2 Solving Problems with the Spreadsheet Link EX Software

2-14

When you finish the example, close the figure window.

 Price Stock Options Using the Binomial Model

2-15

Price Stock Options Using the Binomial Model

The Financial Toolbox product provides functions that compute prices, sensitivities,
and profits for portfolios of options or other equity derivatives. This example uses the
binomial model to price an option. The binomial model assumes that the probability of
each possible price over time follows a binomial distribution. That is, prices can move
to only two values, one up or one down, over any short time period. Plotting these two
values over time is known as building a binomial tree.

This example organizes and displays input and output data using a Microsoft Excel
worksheet. Spreadsheet Link EX functions copy data to a MATLAB matrix, calculate the
prices, and return data to the worksheet.

This example is included in the Spreadsheet Link EX product. To run it:

1 Start Excel, Spreadsheet Link EX, and MATLAB sessions.
2 Navigate to the folder matlabroot\toolbox\exlink\.
3 Open the file ExliSamp.xls
4 Execute the example as needed.

Note This example requires Financial Toolbox, Statistics and Machine Learning
Toolbox™, and Optimization Toolbox™.

1 Click the Sheet4 tab on ExliSamp.xls to open the worksheet for this example.

2 Solving Problems with the Spreadsheet Link EX Software

2-16

The worksheet contains three named ranges:

• B4:B10 named bindata. Two cells in bindata contain formulas:

• B7 contains =5/12
• B8 contains =1/12

• B15 named asset_tree.
• B23 named value_tree.

2 Make D5 the active cell. Press F2; then press Enter to execute the Spreadsheet Link
EX function that copies the asset data to the MATLAB workspace.

3 Move to D8 and execute the function that computes the binomial prices.
4 Execute the functions in D11 and D12 to copy the price data to the Excel worksheet.

 Price Stock Options Using the Binomial Model

2-17

The worksheet looks as follows.

Read the asset price tree as follows:

• Period 1 shows the up and down prices.
• Period 2 shows the up-up, up-down, and down-down prices.
• Period 3 shows the up-up-up, up-up, down-down, and down-down-down prices.
• And so on.

Ignore the zeros. The option value tree gives the associated option value for each
node in the price tree. The option value is zero for prices significantly above the
exercise price. Ignore the zeros that correspond to a zero in the price tree.

2 Solving Problems with the Spreadsheet Link EX Software

2-18

5 Try changing the data in B4:B10, and then executing the Spreadsheet Link EX
functions again.

Note: If you increase the time to maturity (B7) or change the time increment (B8),
you may need to enlarge the output tree areas.

6 When you finish the example, close the figure window.

 Compute Efficient Frontier of Financial Portfolios

2-19

Compute Efficient Frontier of Financial Portfolios

MATLAB and Financial Toolbox functions compute and plot risks, variances, rates
of return, and the efficient frontier of portfolios. Efficient portfolios have the lowest
aggregate variance, or risk, for a given return. Microsoft Excel and the Spreadsheet Link
EX software let you set up data, execute financial functions and MATLAB graphics, and
display numeric results.

This example analyzes three portfolios, using rates of return for six time periods. In
actual practice, these functions can analyze many portfolios over many time periods,
limited only by the amount of computer memory available.

This example is included in the Spreadsheet Link EX product. To run it:

1 Start Excel, Spreadsheet Link EX, and MATLAB sessions.
2 Navigate to the folder matlabroot\toolbox\exlink\.
3 Open the file ExliSamp.xls
4 Execute the example as needed.

Note This example requires Financial Toolbox, Statistics and Machine Learning Toolbox,
and Optimization Toolbox.

1 Click the Sheet5 tab on ExliSamp.xls. The worksheet for this example appears.

2 Solving Problems with the Spreadsheet Link EX Software

2-20

2 Make A15 the active cell. Press F2; then press Enter. The Spreadsheet Link EX
function transfers the labels that describe the output that the MATLAB software
computes.

3 Make A16 the active cell to copy the portfolio return data to the MATLAB
workspace.

4 Execute the functions in A19 and A20 to compute the Financial Toolbox efficient
frontier function for 20 points along the frontier.

5 Execute the Spreadsheet Link EX functions in A23, A24, and A25 to copy the output
data to the Excel worksheet.

The worksheet looks as follows.

 Compute Efficient Frontier of Financial Portfolios

2-21

The data describes the efficient frontier for these three portfolios: that set of points
representing the highest rate of return (ROR) for a given risk. For each of the 20
points along the frontier, the weighted investment in each portfolio (Weights) would
achieve that rate of return.

6 Now move to A28 and press F2; then press Enter to execute the Financial Toolbox
function that plots the efficient frontier for the same portfolio data.

The following figure appears.

2 Solving Problems with the Spreadsheet Link EX Software

2-22

The light blue line shows the efficient frontier. Note the change in slope above a 6.8%
return because the Corporate Bond portfolio no longer contributes to the efficient
frontier.

7 To try running this example using different data, close the figure window and
change the data in cells B4:D9. Then execute all the Spreadsheet Link EX functions

 Compute Efficient Frontier of Financial Portfolios

2-23

again. The worksheet then shows the new frontier data, and the MATLAB software
displays a new efficient frontier graph.

When you finish this example, close the figure window.

2 Solving Problems with the Spreadsheet Link EX Software

2-24

Map Time and Bond Cash Flows

This example shows how to use the Financial Toolbox and Spreadsheet Link EX software
to compute a set of cash flow amounts and dates, given a portfolio of five bonds with
known maturity dates and coupon rates. It is included in the Spreadsheet Link EX
product. To run it:

1 Start Excel, Spreadsheet Link EX, and MATLAB sessions.
2 Navigate to the folder matlabroot\toolbox\exlink\.
3 Open the file ExliSamp.xls
4 Execute the example as needed.

Note This example requires Financial Toolbox, Statistics and Machine Learning Toolbox,
and Optimization Toolbox.

1 Click the Sheet6 tab on ExliSamp.xls. The worksheet for this example appears.

 Map Time and Bond Cash Flows

2-25

2 Make A18 the active cell. Press F2, then Enter to execute the Spreadsheet Link EX
function that transfers the column vector Maturity to the MATLAB workspace.

3 Make A19 the active cell to transfer the column vector Coupon Rate to the
MATLAB workspace.

4 Make A20 the active cell to transfer the settlement date to the MATLAB workspace.
5 Execute the functions in cells A23 and A24 to enable the Financial Toolbox software

to compute cash flow amounts and dates.
6 Now execute the functions in cells A27 through A29 to transform the dates into

string form contained in a cell array.

2 Solving Problems with the Spreadsheet Link EX Software

2-26

7 Execute the functions in cells A32 through A34 to transfer the data to the Excel
worksheet.

8 Finally, execute the function in cell A37 to display a plot of the cash flows for each
portfolio item.

 Map Time and Bond Cash Flows

2-27

9 When you finish the example, close the figure window.

3

Error Messages and Troubleshooting

• “Worksheet Cell Errors” on page 3-2
• “Microsoft Excel Errors” on page 3-5
• “Data Errors” on page 3-8
• “License Errors” on page 3-10
• “Startup Errors” on page 3-11
• “Audible Error Signals” on page 3-12

3 Error Messages and Troubleshooting

3-2

Worksheet Cell Errors

You might see these error messages displayed in a worksheet cell.

The first column contains worksheet cell error messages. The error messages begin with
the number sign (#). Most end with an exclamation point (!) or with a question mark (?).

Worksheet Cell Error Messages

Error Message Meaning Solution

#COLS>#MAXCOLS! Your MATLAB variable exceeds the
Microsoft Excel limit of #MAXCOLS!
columns.

This is a limitation in the Excel
product. Try the computation
with a variable containing fewer
columns.

#COMMAND! The MATLAB software does not
recognize the command in an
MLEvalString function. The
command might be misspelled.

Verify the spelling of the MATLAB
command. Correct typing errors.

#DIMENSION! You used MLAppendMatrix and
the dimensions of the appended
data do not match the dimensions
of the matrix you want to append.

Verify the matrix dimensions and
the appended data dimensions,
and correct the argument.
For more information, see the
MLAppendMatrix reference page.

#INVALIDNAME! You entered an illegal variable
name.

Make sure to use legal MATLAB
variable names. MATLAB variable
names must start with a letter
followed by up to 30 letters, digits,
or underscores.

#INVALIDTYPE! You specified an illegal MATLAB
data type with MLGetVar or
MLGetMatrix.

Make sure to use the supported
MATLAB data types.

#MATLAB? You used a Spreadsheet Link EX
function and no MATLAB software
session is running.

Start the Spreadsheet Link EX
and MATLAB software. See “Start
and Stop Spreadsheet Link EX and
MATLAB” on page 1-14.

#NAME? The function name is unrecognized.
The excllink.xla add-in is not

Be sure the excllink.xla add-
in is loaded. See “Add-In Setup”
on page 1-6. Check the spelling of

 Worksheet Cell Errors

3-3

Error Message Meaning Solution

loaded, or the function name might
be misspelled.

the function name. Correct typing
errors.

#NONEXIST! You referenced a nonexistent
matrix in an MLGetMatrix or
MLDeleteMatrix function. The
matrix name might be misspelled.

Also, you receive the #NONEXIST!
error when you attempt to use
matlabfcn to obtain an output.

Verify the spelling of the MATLAB
matrix. Use the MATLAB whos
command to display existing
matrices. Correct typing errors.

#ROWS>#MAXROWS! Your MATLAB variable exceeds the
Excel limit of #MAXROWS! rows.

This is a limitation in the Excel
product. Try the computation with
a variable containing fewer rows.

#SYNTAX? You entered a Spreadsheet Link
EX function with incorrect syntax.
For example, you did not specify
double quotation marks ("), or you
specified single quotation marks (')
instead of double quotation marks.

Verify and correct the function
syntax.

#VALUE! An argument is missing from a
function, or a function argument is
the wrong type.

Supply the correct number of
function arguments, of the correct
type.

#VALUE! A macro subroutine uses
MLGetMatrix followed by
MatlabRequest, which is correct
standard usage. A macro function
calls that subroutine, and you
execute that function from a
worksheet cell. The function works
correctly, but this message appears
in the cell.

Since the function works
correctly, ignore the message.
Or, in this special case, remove
MatlabRequest from the
subroutine.

#INVALIDRANGE! The named range is defined
incorrectly, or the named range
spans multiple worksheets.

Select a range of data on only
one worksheet and create an
appropriate name for the range
of data. For instructions about
defining names, see Excel Help.

3 Error Messages and Troubleshooting

3-4

Note: When you open an Excel worksheet that contains Spreadsheet Link EX functions,
the Excel software tries to execute the functions from the bottom up and right to left.
Excel might generate cell error messages such as #COMMAND! or #NONEXIST!. This is
expected behavior, so ignore the messages and do the following:

1 Close the MATLAB figure windows.

2 Execute the cell functions again one at a time in the correct order by pressing F2,
and then Enter.

 Microsoft Excel Errors

3-5

Microsoft Excel Errors

The Excel software can display these error messages.

Error Message Cause of Error Solution

Error in formula You entered a formula
incorrectly. Common errors
include a space between
the function name and the
left parenthesis; or missing,
extra, or mismatched
parentheses.

Note: If you use the
Spreadsheet Link EX
software with a non-English
(United States) Windows
desktop environment,
certain syntactical elements
might not work. For
details, see “Localization
Information” on page 1-37.

Review the entry and correct
typing errors.

Can't find project or

library

or

Compile error: Sub or

Function not defined

You executed a macro
and the location of
excllink.xla is incorrect
or not specified.

Click OK. The References
window opens. Remove the
check mark from MISSING:
excllink.xla. Find
excllink.xla in its correct
location, select its check box
in the References window,
and click OK. Or, select
Tools > References to open
the References window.
Select the box named
SpreadsheetLink2007_2010.
Click OK.

Run-time error

'1004': Cells method

You used MLGetMatrix
and the matrix is larger

Click OK. Reset worksheet
calculation mode to

3 Error Messages and Troubleshooting

3-6

Error Message Cause of Error Solution

of Application class

failed

than the space available in
the worksheet. This error
destabilizes the Spreadsheet
Link EX software session
and changes worksheet
calculation mode to manual.

automatic, and save your
worksheet as needed. Restart
the Excel, Spreadsheet Link
EX, and MATLAB software
sessions.

MATLAB failed to

check out a license

of Spreadsheet Link

EX or does not have a

valid installation of

Spreadsheet Link EX

You entered an invalid
license passcode or did not
install Spreadsheet Link EX
properly.

Ensure that you entered the
license passcode properly.
Reinstall the Spreadsheet
Link EX add-on. (See
“Installation” on page
1-4.) If you followed the
installation guidelines,
used a proper passcode,
and you are still unable to
start the Spreadsheet Link
EX software, contact your
MathWorks® representative.

Datasource: Excel;

prompt for user name

and password

This message appears when
an attempt to connect to
the Excel software from
the Database Toolbox™
software fails.

Ensure that the Excel
spreadsheet referenced by
the data source exists, then
retry the connection.

Could not load some

objects because they

are not available on

this machine

This message appears when
Excel 2013 is not configured
properly.

From the Windows Control
Panel, remove Microsoft
Office 2010 in the programs
list.

 Microsoft Excel Errors

3-7

Error Message Cause of Error Solution

This error appears when
you start the automation
server from the Excel
interface, and multiple
versions of the MATLAB
software are installed on
your desktop.

To correct this error, perform
the following:

1 Shut down all MATLAB
and Excel instances.

2 Open a command
prompt, and using
cd, change to the bin
\win32 subfolder of the
MATLAB installation
folder.

3 Type the command:

.\matlab /regserver

4 When the MATLAB
session starts, close it.
Using /regserver fixes
the registry entries.

5 Start an Excel session.
The Spreadsheet Link
EX add-in now loads
properly.

6 Verify that the
Spreadsheet Link EX
software is working by
entering the following
command from the
Command Window:

a = 3.14159

7 Enter the following
formula in cell A1 of the
open Excel worksheet:

=mlgetmatrix("a","a1")

8 The value 3.14159
appears in cell A1.

3 Error Messages and Troubleshooting

3-8

Data Errors

In this section...

“Matrix Data Errors” on page 3-8
“Errors When Opening Saved Worksheets” on page 3-8

Matrix Data Errors

Data in the MATLAB or Microsoft Excel workspaces may produce the following errors.

Data Errors

Data Error Cause Solution

MATLAB matrix cells
contain zeros (0).

Corresponding Excel worksheet
cells are empty.

Excel worksheet cells must
contain only numeric or string
data.

MATLAB matrix is a 1-
by-1 zero matrix.

You used quotation marks
around the data-location
argument in MLPutMatrix or
MLAppendMatrix.

Correct the syntax to remove
quotation marks.

MATLAB matrix is empty
([]).

You referenced a nonexistent VBA
variable in MLPutVar.

Correct the macro; you may
have typed the variable name
incorrectly.

VBA matrix is empty. You referenced a nonexistent
MATLAB variable in MLGetVar.

Correct the macro; you may
have typed the variable name
incorrectly.

Errors When Opening Saved Worksheets

This section describes errors that you may encounter when opening saved worksheets.

• When you open an Excel worksheet that contains Spreadsheet Link EX functions,
the Excel software tries to execute the functions from the bottom up and right to left.
Excel may generate cell error messages such as #COMMAND! or #NONEXIST!. This is
expected behavior. Do the following:

1 Ignore the messages.

 Data Errors

3-9

2 Close MATLAB figure windows.
3 Execute the cell functions again one at a time in the correct order by pressing F2,

and then Enter.
• If you save an Excel worksheet containing Spreadsheet Link EX functions, and

then reopen it in an environment where the excllink.xla add-in is in a different
location, you may see the message: This document contains links: Re-
establish links?

To address this issue, do the following:

1 Click No.
2 Select Edit > Links.
3 In the Links dialog box, click Change Source.
4 In the Change Links dialog box, select matlabroot\toolbox\exlink

\excllink.xla.
5 Click OK.

The Excel software executes each function as it changes its link. You may see
MATLAB figure windows and hear error beeps as the links change and functions
execute; ignore them.

6 In the Links dialog box, click OK.

The worksheet now connects to the Spreadsheet Link EX add-in.

Or, instead of using the Links menu, you can manually edit the link location in each
affected worksheet cell to show the correct location of excllink.xla.

3 Error Messages and Troubleshooting

3-10

License Errors

If you are running an automation server of MATLAB that does not have a Spreadsheet
Link EX license associated with it, you will receive an license error message. To correct
this issue, from the MATLAB installation that includes Spreadsheet Link EX, run the
command:

matlab /regserver

 Startup Errors

3-11

Startup Errors

If you have enabled MLAutoStart, double-clicking an xls file in the MATLAB Current
Folder browser and choosing Open Outside MATLAB causes a Microsoft Excel error to
appear. To open the file successfully, click End in the error window.

To avoid this issue, disable MLAutoStart. Start MATLAB sessions from the Excel
interface by clicking the startmatlab button in the Excel menu bar.

3 Error Messages and Troubleshooting

3-12

Audible Error Signals

You may hear audible errors while passing data to the MATLAB workspace using
MLPutMatrix or MLAppendMatrix. These errors usually indicate that you have
insufficient computer memory to carry out the operation. Close other applications or
clear unnecessary variables from the MATLAB workspace and try again. If the error
signal reoccurs, you probably have insufficient physical memory in your computer for this
operation.

4

Functions — Alphabetical List

4 Functions — Alphabetical List

4-2

matlabfcn
Evaluate MATLAB command given Microsoft Excel data

Syntax

matlabfcn(command,inputs)

Description

matlabfcn(command,inputs) passes the command to the MATLAB workspace for
evaluation, given the function input data. The function returns a single value or string
depending upon the MATLAB output. The result is returned to the calling worksheet
cell. This function is intended for use as an Excel worksheet function.

Input Arguments

command

MATLAB command to evaluate.

Embed the command in double quotes, for example, "command".

inputs

Variable length input argument list passed to a MATLAB command.

The argument list may contain a range of worksheet cells that contain input data.

Examples

Compute the Sum of Excel Data and Return the Result to an Active Cell

Add the data in worksheet cells B1 through B10 returning the sum to the active
worksheet cell:

 matlabfcn

4-3

matlabfcn("sum", B1:B10)

Plot Excel Data Using the MATLAB Plotting Function

Plot the data in worksheet cells B1 through B10, using x as the marker type:

matlabfcn("plot", B1:B10, "x")

• “Work with MATLAB Functions in Microsoft Excel” on page 1-17

More About

Tips

• If matlabfcn fails, then by default you get a standard Spreadsheet Link EX error,
such as #COMMAND. To return MATLAB error strings, use MLShowMatlabErrors.

See Also
matlabsub | MLShowMatlabErrors

Introduced before R2006a

4 Functions — Alphabetical List

4-4

matlabinit
Initialize Spreadsheet Link EX and start MATLAB

Syntax

matlabinit

Description

matlabinit Initializes the Spreadsheet Link EX software and starts MATLAB process.
If the Spreadsheet Link EX software has been initialized and the MATLAB software is
running, subsequent invocations do nothing. Use matlabinit to start Spreadsheet Link
EX and MATLAB sessions manually when you have set MLAutoStart to no. If you set
MLAutoStart to yes, matlabinit executes automatically.

More About

Tips

• To run matlabinit from the Microsoft Excel toolbar, click Tools > Macro. In the
Macro Name/Reference box, enter matlabinit and click Run. Alternatively, you
can include this function in a macro subroutine. You cannot run matlabinit as a
worksheet cell formula or in a macro function.

See Also
MLAutoStart | MLOpen

Related Examples
• “Work with MATLAB Functions in Microsoft Excel” on page 1-17

Introduced before R2006a

 matlabsub

4-5

matlabsub
Evaluate MATLAB command given Microsoft Excel data and designate output location

Syntax

matlabsub(command,edat,inputs)

Description

matlabsub(command,edat,inputs) passes the specified command to the MATLAB
workspace for evaluation, given the function input data. The function returns a single
value or string depending upon the MATLAB output. This function is intended for use as
an Excel worksheet function.

Input Arguments

command

MATLAB command to evaluate.

Enter the MATLAB command in double quotes, for example, "command".

edat

Worksheet location where the function writes the returned data.

edat in quotes directly specifies the location.edat without quotes specifies a worksheet
cell address (or range name) that contains a reference to the location. In both cases, edat
must be a cell address or a range name.

Although you can specify a range of output cells, matlabsub does not support multiple
outputs. Instead of returning multiple outputs, matlabsub returns the first output
starting in the first cell from the specified range, and discards all other outputs.

inputs

Variable length input argument list passed to MATLAB command.

4 Functions — Alphabetical List

4-6

This argument list can contain a range of worksheet cells that contain input data.

Examples

Compute the Sum of Data and Return Result to the Specified Cell

Sum the data in worksheet cells B1 through B10 returning the output to cell A1:

matlabsub("sum", "A1", B1:B10)

• “Work with MATLAB Functions in Microsoft Excel” on page 1-17

More About

Tips

• To return an array of data to the Microsoft Excel Visual Basic for Applications (VBA)
workspace, see MLEvalString and MLGetVar.

• edat must not include the cell that contains the matlabsub function. In other words,
be careful not to overwrite the function itself.

• Ensure that there is enough room in the worksheet to write the matrix contents. If
there is insufficient room, the function generates a fatal error.

• If matlabsub fails, then by default you get a standard Spreadsheet Link EX error,
such as #COMMAND. To return MATLAB error strings, use MLShowMatlabErrors.

See Also
matlabfcn | MLShowMatlabErrors

Introduced before R2006a

 MLAppendMatrix

4-7

MLAppendMatrix
Create or append MATLAB matrix with data from Microsoft Excel worksheet

Syntax

MLAppendMatrix(var_name,mdat)

MLAppendMatrix var_name,mdat

out = MLAppendMatrix(var_name,mdat)

Description

MLAppendMatrix(var_name,mdat) appends data in mdat to MATLAB matrix
var_name or creates var_name if it does not exist. Use this syntax when working directly
in a worksheet.

MLAppendMatrix var_name,mdat appends data in mdat to MATLAB matrix
var_name or creates var_name if it does not exist. Use this syntax in a VBA macro.

out = MLAppendMatrix(var_name,mdat) lets you catch errors when executing
MLAppendMatrix in a VBA macro. If MLAppendMatrix fails, then out is a string
containing error code. Otherwise, out is 0.

Input Arguments

var_name

Name of MATLAB matrix to which to append data.

var_name in quotes directly specifies the matrix name. var_name without quotes
specifies a worksheet cell address (or range name) that contains the matrix name. Do not
use the MATLAB variable ans as var_name.

mdat

Location of data to append to var_name.

4 Functions — Alphabetical List

4-8

mdat must be a worksheet cell address or range name. Do not enclose it in quotes.

mdat must contain either numeric data or string data. Data types cannot be combined
within the range specified in mdat. Empty mdat cells become MATLAB matrix elements
containing zero if the data is numeric, and empty strings if the data is a string.

Output Arguments

out

0 if the command succeeded. Otherwise, a string containing error code.

Examples

Append Data from a Worksheet Cell Range to a MATLAB Matrix

In this example, B is a 2-by-2 MATLAB matrix. Append the data in worksheet cell range
A1:A2 to B:

MLAppendMatrix("B", A1:A2)

 A1
 A2

B is now a 2-by-3 matrix with the data from A1:A2 in the third column.

Append Data from a Named Worksheet Cell Range to a MATLAB Matrix

B is a 2-by-2 MATLAB matrix. Cell C1 contains the label (string) B, and new_data is the
name of the cell range A1:B2. Append the data in cell range A1:B2 to B:

MLAppendMatrix(C1, new_data)

A1 B1
A2 B2

 MLAppendMatrix

4-9

B is now a 4-by-2 matrix with the data from A1:B2 in the last two rows.

More About

Tips

• MLAppendMatrix checks the dimensions of var_name and mdat to determine how
to append mdat to var_name. If the dimensions allow appending mdat as either new
rows or new columns, it appends mdat to var_name as new rows. If the dimensions do
not match, the function returns an error.

• If mdat is not initially an Excel Range data type and you call the function from a
worksheet, MLAppendMatrix performs the necessary type coercion.

• If mdat is not an Excel Range data type and you call the function from within a
Microsoft Visual Basic macro, the call fails. The error message ByRef Argument
Type Mismatch appears.

See Also
MLPutMatrix

Introduced before R2006a

4 Functions — Alphabetical List

4-10

MLAutoStart

Automatically start MATLAB

Syntax

MLAutoStart(flag)

MLAutoStart flag

out = MLAutoStart(flag)

Description

MLAutoStart(flag) sets automatic startup of the Spreadsheet Link EX and MATLAB
software. A change of state takes effect the next time an Excel session starts. Use this
syntax when working directly in a worksheet.

MLAutoStart flag sets automatic startup of the Spreadsheet Link EX and MATLAB
software. A change of state takes effect the next time an Excel session starts. Use this
syntax in a VBA macro.

out = MLAutoStart(flag) lets you catch errors when executing MLAutoStart in a
VBA macro. If MLAutoStart fails, then out is a string containing error code. Otherwise,
out is 0.

Input Arguments

flag

Either "yes" or "no".

Specify "yes" to automatically start the Spreadsheet Link EX and MATLAB software
every time a Microsoft Excel session starts. Specify "no" to cancel automatic startup of
the Spreadsheet Link EX and MATLAB software.

Default: "yes"

 MLAutoStart

4-11

Output Arguments

out

0 if the command succeeded. Otherwise, a string containing error code.

Examples

Cancel Automatic Startup of Spreadsheet Link EX and MATLAB

Enter this command in a worksheet:

MLAutoStart("no")

Spreadsheet Link EX and MATLAB do not start on subsequent Excel session invocations.

More About

Tips

• If Spreadsheet Link EX and MATLAB are running, then MLAutoStart("no") does
not stop them.

• “Start Spreadsheet Link EX and MATLAB Automatically” on page 1-14

See Also
matlabinit | MLClose | MLOpen

Introduced before R2006a

4 Functions — Alphabetical List

4-12

MLClose
Stop MATLAB

Syntax

MLClose()

MLClose

out = MLClose()

Description

MLClose() ends the MATLAB process, deletes all variables from the MATLAB
workspace, and tells the Microsoft Excel software that the MATLAB software is no longer
running. Use this syntax when working directly in a worksheet.

MLClose ends the MATLAB process, deletes all variables from the MATLAB workspace,
and tells the Microsoft Excel software that the MATLAB software is no longer running.
Use this syntax in a VBA macro.

out = MLClose() lets you catch errors when executing MLClose in a VBA macro. If
MLClose fails, then out is a string containing error code. Otherwise, out is 0.

Output Arguments

out

0 if the command succeeded. Otherwise, a string containing error code.

Examples

End the MATLAB Session

End the MATLAB session from a worksheet:

 MLClose

4-13

MLClose()

More About

Tips

• If you use MLClose when no MATLAB process is running, nothing happens.

• “Stop Spreadsheet Link EX and MATLAB” on page 1-16

See Also
MLAutoStart | MLOpen

Introduced before R2006a

4 Functions — Alphabetical List

4-14

MLDeleteMatrix
Delete MATLAB matrix

Syntax

MLDeleteMatrix(var_name)

MLDeleteMatrix var_name

out = MLDeleteMatrix(var_name)

Description

MLDeleteMatrix(var_name) deletes the named matrix from the MATLAB workspace.
Use this syntax when working directly in a worksheet.

MLDeleteMatrix var_name deletes the named matrix from the MATLAB workspace.
Use this syntax in a VBA macro.

out = MLDeleteMatrix(var_name) lets you catch errors when executing
MLDeleteMatrix in a VBA macro. If MLDeleteMatrix fails, then out is a string
containing error code. Otherwise, out is 0.

Input Arguments

var_name

Name of MATLAB matrix to delete.

var_name in quotes directly specifies the matrix name. var_name without quotes
specifies a worksheet cell address (or range name) that contains the matrix name.

Output Arguments

out

0 if the command succeeded. Otherwise, a string containing error code.

 MLDeleteMatrix

4-15

Examples

Delete a Matrix from the MATLAB Workspace

Delete matrix A from the MATLAB workspace:

MLDeleteMatrix("A")

See Also
MLAppendMatrix | MLGetMatrix | MLPutMatrix

Introduced before R2006a

4 Functions — Alphabetical List

4-16

MLEvalString
Evaluate command in MATLAB

Syntax
MLEvalString(command)

MLEvalString command

out = MLEvalString(command)

Description
MLEvalString(command) passes a command string to the MATLAB software for
evaluation. Use this syntax when working directly in a worksheet.

MLEvalString command passes a command string to the MATLAB software for
evaluation. Use this syntax in a VBA macro.

out = MLEvalString(command) lets you catch errors when executing MLEvalString
in a VBA macro. If MLEvalString fails, then out is a string containing error code or
error message. Otherwise, out is 0.

Input Arguments

command

MATLAB command to evaluate.

command in quotes directly specifies the command. command without quotes specifies a
worksheet cell address (or range name) that contains the command.

Output Arguments

out

0 if the command succeeded. Otherwise, a string containing error code or error message.
To return MATLAB error messages instead of error code, use MLShowMatlabErrors.

 MLEvalString

4-17

Examples

Evaluate a MATLAB Command from an Excel Worksheet

Divide the MATLAB variable b by 2, and then plot it:

MLEvalString("b = b/2;plot(b)")

This command only modifies the MATLAB variable b. To update data in the Excel
worksheet, use MLGetMatrix.

More About

Tips

• The specified action alters only the MATLAB workspace. It has no effect on the
Microsoft Excel workspace.

• If MLEvalString fails, then by default you get a standard Spreadsheet
Link EX error, such as #COMMAND. To return MATLAB error strings, use
MLShowMatlabErrors.

See Also
MLGetMatrix | MLShowMatlabErrors

Introduced before R2006a

4 Functions — Alphabetical List

4-18

MLGetFigure

Import current MATLAB figure into Microsoft Excel spreadsheet

Syntax

MLGetFigure(width,height)

MLGetFigure width, height

out = MLGetFigure(width,height)

Description

MLGetFigure(width,height) import the current MATLAB figure into an Excel
worksheet, where the top-left corner of the figure is the current spreadsheet cell. Use this
syntax when working directly in a worksheet.

MLGetFigure width, height import the current MATLAB figure into an Excel
worksheet, where the top-left corner of the figure is the current spreadsheet cell. Use this
syntax in a VBA macro.

out = MLGetFigure(width,height) lets you catch errors when executing
MLGetFigure in a VBA macro. If MLGetFigure fails, then out is a string containing
error code. Otherwise, out is 0.

Input Arguments

width

Width (in normalized units) of the MATLAB figure when imported into an Excel
worksheet.

height

Height (in normalized units) of the MATLAB figure when imported into an Excel
worksheet.

 MLGetFigure

4-19

Output Arguments

out

0 if the command succeeded. Otherwise, a string containing error code.

Examples

Import a MATLAB Figure into an Excel Worksheet

Import the current MATLAB figure into an Excel worksheet. Specify the width and the
height of the figure to be half those of the original figure:

MLGetFigure(.5,.5)

Note that if you use Microsoft Excel 2007 or 2010, the width and the height of the
imported figure will be a quarter of those of the original figure.

More About

Tips

• If you use Microsoft Excel 2007 or 2010, MLGetFigure scales the imported figure by
the product of width and height along both dimensions.

• If worksheet calculation mode is automatic, MLGetFigure executes when you
enter the formula in a cell. If worksheet calculation mode is manual, enter the
MLGetFigure function in a cell, then press F9 to execute it. Remember that pressing
F9 in this situation can also execute other worksheet functions again and generate
unpredictable results.

• If you use MLGetFigure in a macro subroutine, enter MatlabRequest on the line
after the MLGetFigure. MatlabRequest initializes internal Spreadsheet Link EX
variables and enables MLGetFigure to function in a subroutine. Do not include
MatlabRequest in a macro function unless the function is called from a subroutine.

See Also
MLGetMatrix | MLGetVar

4 Functions — Alphabetical List

4-20

Introduced in R2006b

 MLGetMatrix

4-21

MLGetMatrix
Write contents of MATLAB matrix to Microsoft Excel worksheet

Syntax

MLGetMatrix(var_name,edat)

MLGetMatrix var_name, edat

out = MLGetMatrix(var_name,edat)

Description

MLGetMatrix(var_name,edat) writes the contents of MATLAB matrix var_name in
the Excel worksheet, beginning in the upper-left cell specified by edat. Use this syntax
when working directly in a worksheet.

MLGetMatrix var_name, edat writes the contents of MATLAB matrix var_name in
the Excel worksheet, beginning in the upper-left cell specified by edat. Use this syntax in
a VBA macro.

out = MLGetMatrix(var_name,edat) lets you catch errors when executing
MLGetMatrix in a VBA macro. If MLGetMatrix fails, then out is a string containing
error code. Otherwise, out is 0.

Input Arguments

var_name

Name of MATLAB matrix to access.

var_name in quotes directly specifies the matrix name. var_name without quotes
specifies a worksheet cell address (or range name) that contains the matrix name. Do not
use the MATLAB variable ans as var_name.

edat

Worksheet location where the function writes the contents of var_name.

4 Functions — Alphabetical List

4-22

edat in quotes directly specifies the location. edat without quotes specifies a worksheet
cell address (or range name) that contains a reference to the location. In both cases, edat
must be a cell address or a range name.

Output Arguments

out

0 if the command succeeded. Otherwise, a string containing error code.

Examples

Specify the Matrix Name and Location Directly

Write the contents of the MATLAB matrix bonds starting in cell C10 of Sheet2. If
bonds is a 4-by-3 matrix, fill cells C10..E13 with data:

MLGetMatrix("bonds", "Sheet2!C10")

Specify the Matrix Name and Location Indirectly

Access the MATLAB matrix named by the string in worksheet cell B12. Write the
contents of the matrix to the worksheet starting at the location named by the string in
worksheet cell B13:

MLGetMatrix(B12, B13)

Use MLGetMatrix in a VBA Macro

Write the contents of MATLAB matrix A to the worksheet, starting at the cell named by
RangeA:

Sub Get_RangeA()

MLGetMatrix "A", "RangeA"

MatlabRequest

End Sub

Use the Address Property of the Range Object to Specify Location

In a macro, use the Address property of the range object returned by the VBA Cells
function to specify where to write the data:

 MLGetMatrix

4-23

Sub Get_Variable()

MLGetMatrix "X", Cells(3, 2).Address

MatlabRequest

End Sub

Catch Errors in a VBA Macro

Use this function to get the variable A from MATLAB and to test if the command
succeeded:

Sub myfun()

 Dim out As Variant

 out = MLGetMatrix("A", "A1")

 If out <> 0 Then

 MsgBox out

 End If

 MatlabRequest

End Sub

If MLGetMatrix fails, myfun displays a message box with the error code.

• “Work with MATLAB Functions in Microsoft Excel” on page 1-17

More About

Tips

• If data exists in the specified worksheet cells, it is overwritten.
• If the dimensions of the MATLAB matrix are larger than that of the specified cells,

the data overflows into additional rows and columns.
• edat must not include the cell that contains the MLGetMatrix function. In other

words, be careful not to overwrite the function itself. Also make sure there is enough
room in the worksheet to write the matrix contents. If there is insufficient room, the
function generates a fatal error.

• MLGetMatrix function does not automatically adjust cell addresses. If edat is an
explicit cell address, edit it to correct the address when you do either of the following:

• Insert or delete rows or columns.
• Move or copy the function to another cell.

4 Functions — Alphabetical List

4-24

• If worksheet calculation mode is automatic, MLGetMatrix executes when you
enter the formula in a cell. If worksheet calculation mode is manual, enter the
MLGetMatrix function in a cell, and then press F9 to execute it. However, pressing
F9 in this situation may also execute other worksheet functions again and generate
unpredictable results.

• If you use MLGetMatrix in a macro subroutine, enter MatlabRequest on the line
after the MLGetMatrix. MatlabRequest initializes internal Spreadsheet Link EX
variables and enables MLGetMatrix to function in a subroutine. Do not include
MatlabRequest in a macro function unless the function is called from a subroutine.

See Also
MLAppendMatrix | MLPutMatrix | MLPutRanges

Introduced before R2006a

 MLGetVar

4-25

MLGetVar
Write contents of MATLAB matrix in Microsoft Excel VBA variable

Syntax

MLGetVar ML_var_name, VBA_var_name

Description

MLGetVar ML_var_name, VBA_var_name writes the contents of MATLAB matrix
ML_var_name in the Excel Visual Basic for Applications (VBA) variable VBA_var_name.
Creates VBA_var_name if it does not exist. Replaces existing data in VBA_var_name.

Input Arguments

ML_var_name

Name of MATLAB matrix to access.

ML_var_name in quotes directly specifies the matrix name. ML_var_name without
quotes specifies a VBA variable that contains the matrix name as a string. Do not use
the MATLAB variable ans as ML_var_name. If defined, ML_var_name must be of type
VARIANT. Any other type will give a "TYPE MISMATCH" error.

VBA_var_name

Name of VBA variable where the function writes the contents of ML_var_name.

Use VBA_var_name without quotes.

Examples

Write the Contents of a MATLAB Matrix into a VBA Variable

Write the contents of the MATLAB matrix J into the VBA variable DataJ:

4 Functions — Alphabetical List

4-26

Sub Fetch()

MLGetVar "J", DataJ

End Sub

• “Work with MATLAB Functions in Microsoft Excel” on page 1-17

See Also
MLPutVar

Introduced before R2006a

 MLMissingDataAsNaN

4-27

MLMissingDataAsNaN

Set empty cells to NaN or 0

Syntax

MLMissingDataAsNaN(flag)

MLMissingDataAsNaN flag

out = MLMissingDataAsNaN(flag)

Description

MLMissingDataAsNaN(flag) sets empty cells to NaN or 0. When the Spreadsheet
Link EX software is installed, the default is "no", so empty cells are handled as 0s. If
you change the value of MLUseCellArray to "yes", the change remains in effect the
next time a Microsoft Excel session starts. Use this syntax when working directly in a
worksheet.

MLMissingDataAsNaN flag sets empty cells to NaN or 0. Use this syntax in a VBA
macro.

out = MLMissingDataAsNaN(flag) lets you catch errors when executing
MLMissingDataAsNaN in a VBA macro. If MLMissingDataAsNaN fails, then out is a
string containing error code. Otherwise, out is 0.

Input Arguments

flag

Either "yes" or "no".

Specify "yes" to set empty cells to use NaNs. Specify "no" to set empty cells to use 0s.

Default: "no"

4 Functions — Alphabetical List

4-28

Output Arguments

out

0 if the command succeeded. Otherwise, a string containing error code.

Examples

Set Empty Cells to Use 0s

Cancel the use of the value NaN for empty cells:

MLMissingDataAsNaN("no")

More About

Tips

• A string in an Excel range always forces cell array output and empty cells as NaNs.

See Also
MLPutMatrix

Introduced in R2007a

 MLOpen

4-29

MLOpen
Start MATLAB

Syntax

MLOpen()

MLOpen

out = MLOpen()

Description

MLOpen() starts MATLAB process. Use MLOpen to restart the MATLAB session after
you have stopped it with MLClose in a given Microsoft Excel session. Use this syntax
when working directly in a worksheet.

MLOpen starts MATLAB process. Use MLOpen to restart the MATLAB session after you
have stopped it with MLClose in a given Microsoft Excel session. Use this syntax in a
VBA macro.

out = MLOpen() lets you catch errors when executing MLOpen in a VBA macro. If
MLOpen fails, then out is a string containing error code. Otherwise, out is 0.

Output Arguments

out

0 if the command succeeded. Otherwise, a string containing error code.

Examples

Start a MATLAB Session

Start a MATLAB session from a worksheet:

4 Functions — Alphabetical List

4-30

MLOpen()

More About

Tips

• If a MATLAB process has already started, subsequent calls to MLOpen do nothing.
• To start a MATLAB session and initialize the Spreadsheet Link EX software, use

matlabinit rather than MLOpen.

See Also
matlabinit | MLClose

Introduced before R2006a

 MLPutMatrix

4-31

MLPutMatrix

Create or overwrite MATLAB matrix with data from Microsoft Excel worksheet

Syntax

MLPutMatrix(var_name, mdat)

MLPutMatrix var_name, mdat

out = MLPutMatrix(var_name,mdat)

Description

MLPutMatrix(var_name, mdat) creates or overwrites matrix var_name in MATLAB
workspace with specified data in mdat. Creates var_name if it does not exist. Use this
syntax when working directly in a worksheet.

MLPutMatrix var_name, mdat creates or overwrites matrix var_name in MATLAB
workspace with specified data in mdat. Use this syntax in a VBA macro.

out = MLPutMatrix(var_name,mdat) lets you catch errors when executing
MLPutMatrix in a VBA macro. If MLPutMatrix fails, then out is a string containing
error code. Otherwise, out is 0.

Input Arguments

var_name

Name of MATLAB matrix to create or overwrite.

var_name in quotes directly specifies the matrix name. var_name without quotes
specifies a worksheet cell address (or range name) that contains the matrix name.

mdat

Location of data to copy into var_name.

4 Functions — Alphabetical List

4-32

mdat must be a worksheet cell address or range name. Do not enclose it in quotes.

Output Arguments

out

0 if the command succeeded. Otherwise, a string containing error code.

Examples

Create or Overwrite a Matrix in the MATLAB Workspace

Create or overwrite matrix A in the MATLAB workspace with the data in the worksheet
range A1:C3:

MLPutMatrix "A", Range("A1:C3")

Import Data from a Microsoft Excel Worksheet to the MATLAB Workspace Using the putmatrix
Toolbar Button

1 In the Excel worksheet, select the columns and/or rows you want to export to the
MATLAB workspace.

2 Click the putmatrix button on the Spreadsheet Link EX toolbar. A window appears
that prompts you to specify the name of the MATLAB variable in which you want to
store your data.

 MLPutMatrix

4-33

3 Enter newmatrix for the MATLAB variable name.
4 Click OK.

Now you can manipulate newmatrix in the Command Window.

newmatrix

newmatrix =

 1 2 3

 4 5 6

• “Work with MATLAB Functions in Microsoft Excel” on page 1-17

More About

Tips

• If var_name exists, this function replaces the contents with mdat.
• Empty numeric data cells within the range of mdat become numeric zeros within the

MATLAB matrix identified by var_name.
• If any element of mdat contains string data, mdat is exported as a MATLAB cell

array. Empty string elements within the range of mdatmdat become NaNs within the
MATLAB cell array.

• When using MLPutMatrix in a subroutine, indicate the source of the worksheet data
using the Microsoft Excel macro Range. For example:

Sub test()

 MLPutMatrix "a", Range("A1:A3")

End Sub

4 Functions — Alphabetical List

4-34

If you have a named range in your worksheet, you can specify the name instead of the
range; for example:

Sub test()

 MLPutMatrix "a", Range("temp")

End Sub

where temp is a named range in your worksheet.

See Also
MLAppendMatrix | MLGetMatrix | MLPutRanges

Introduced before R2006a

 MLPutRanges

4-35

MLPutRanges

Send data in Microsoft Excel named ranges to MATLAB

Syntax

= MLPutRanges()

MLPutRanges

out = MLPutRanges()

Description

= MLPutRanges() writes the named cell ranges in a Microsoft Excel spreadsheet into
MATLAB variables. The variables are named with the same name specified by the cell
range name in Microsoft Excel. To use this syntax, right-click in any Microsoft Excel cell
and enter this syntax and press Enter.

MLPutRanges writes the named cell ranges in a Microsoft Excel spreadsheet into
MATLAB variables. The variables are named with the same name specified by the cell
range name in Microsoft Excel. Use this syntax when working directly in a Microsoft
Visual Basic macro.

out = MLPutRanges() returns the named cell ranges in a Microsoft Excel spreadsheet
into MATLAB variables. The variables are named with the same name specified by the
cell range name in Microsoft Excel. In this case, out specifies whether the MLPutRanges
function executed successfully. Use this syntax when working directly in a Microsoft
Visual Basic macro.

Examples

Send Microsoft Excel Named Ranges to MATLAB in a Microsoft Excel Cell

Define a name for a range of cells. For instructions about defining names, see Excel
Help and enter the search term: define and use names in formulas.

4 Functions — Alphabetical List

4-36

The name of the range of cells appears in the Name Box. In this example, the range
selected from cell A1 to cell E1 is named testData.

Call the function inside a worksheet cell to send data in the named ranges in the current
worksheet to MATLAB.

= MLPutRanges()

 MLPutRanges

4-37

After pressing Enter, the range named testData is sent from Microsoft Excel to a
variable named testData in MATLAB.

Send Microsoft Excel Named Ranges to MATLAB in Microsoft Visual Basic Macro Without
Output

Call the function to send data in the named ranges in the current worksheet to MATLAB.

MLPutRanges

Send Microsoft Excel Named Ranges to MATLAB in Microsoft Visual Basic Macro with Output

Call the function to send data in the named ranges in the current worksheet to MATLAB.

out = MLPutRanges()

out returns 0 if the function succeeded or a string with the corresponding error code if
the function failed.

• “Work with MATLAB Functions in Microsoft Excel” on page 1-17

Output Arguments

out — Status
0 | string

Status for execution of MLPutRanges, returned as 0 if the function succeeded, or a string
containing an error code.

4 Functions — Alphabetical List

4-38

See Also
MLGetMatrix | MLPutMatrix

Introduced in R2013b

 MLPutVar

4-39

MLPutVar

Create or overwrite MATLAB matrix with data from Microsoft Excel VBA variable

Syntax

MLPutVar ML_var_name, VBA_var_name

out = MLPutVar ML_var_name, VBA_var_name

Description

MLPutVar ML_var_name, VBA_var_name creates or overwrites matrix ML_var_name
in MATLAB workspace with data in VBA_var_name. Creates ML_var_name if it does
not exist. If ML_var_name exists, this function replaces the contents with data from
VBA_var_name.

out = MLPutVar ML_var_name, VBA_var_name lets you catch errors when executing
MLPutVar. If MLPutVar fails, then out is a string containing error code. Otherwise, out
is 0.

Input Arguments

ML_var_name

Name of MATLAB matrix to create or overwrite.

ML_var_name in quotes directly specifies the matrix name. ML_var_name without
quotes specifies a VBA variable that contains the matrix name as a string.

VBA_var_name

Name of VBA variable whose contents are written to ML_var_name.

Use VBA_var_name without quotes.

4 Functions — Alphabetical List

4-40

Output Arguments

out

0 if the command succeeded. Otherwise, a string containing error code.

Examples

Create a MATLAB Matrix Using Data Stored in a VBA Variable

Create (or overwrite) the MATLAB matrix K with the data in the VBA variable DataK:

Sub Put()

MLPutVar "K", DataK

End Sub

• “Work with MATLAB Functions in Microsoft Excel” on page 1-17

More About

Tips

• Use MLPutVar only in a macro subroutine, not in a macro function or in a subroutine
called by a function.

• Empty numeric data cells within VBA_var_name become numeric zeros within the
MATLAB matrix identified by ML_var_name.

• If any element of VBA_var_name contains string data, VBA_var_name is exported as
a MATLAB cell array. Empty string elements within VBA_var_name become NaNs
within the MATLAB cell array.

See Also
MLGetVar

Introduced before R2006a

 MLShowMatlabErrors

4-41

MLShowMatlabErrors

Return standard Spreadsheet Link EX errors or full MATLAB errors using
MLEvalString

Syntax

MLShowMatlabErrors(flag)

MLShowMatlabErrors flag

out = MLShowMatlabErrors(flag)

Description

MLShowMatlabErrors(flag) sets the Spreadsheet Link EX error display mode when
executing MATLAB commands using MLEvalString. Use this syntax when working
directly in a worksheet.

MLShowMatlabErrors flag sets the Spreadsheet Link EX error display mode when
executing MATLAB commands using MLEvalString. Use this syntax in a VBA macro.

out = MLShowMatlabErrors(flag) lets you catch errors when executing
MLShowMatlabErrors in a VBA macro. If MLShowMatlabErrors fails, then out is a
string containing error code. Otherwise, out is 0.

Input Arguments

flag

Either "yes" or "no".

Specify "yes" to display the full MATLAB error string upon MLEvalString failure.
Specify "no" to display the standard Spreadsheet Link EX errors upon MLEvalString
failure.

Default: "no"

4 Functions — Alphabetical List

4-42

Output Arguments

out

0 if the command succeeded. Otherwise, a string containing error code.

Examples

Switch to Displaying Spreadsheet Link EX Errors

Switch to displaying standard Spreadsheet Link EX errors, such as #COMMAND, on
MLEvalString failures:

MLShowMatlabErrors("no")

Switch to Displaying MATLAB Errors

Switch to displaying MATLAB error strings, such as ??? Undefined function or
variable 'foo', on MLEvalString failures:

MLShowMatlabErrors("yes")

See Also
MLEvalString

Introduced in R2006b

 MLStartDir

4-43

MLStartDir

Specify MATLAB current working folder after startup

Syntax

MLStartDir(path)

MLStartDir path

out = MLStartDir(path)

Description

MLStartDir(path) sets the MATLAB working folder after startup. Use this syntax
when working directly in a worksheet.

MLStartDir path sets the MATLAB working folder after startup. Use this syntax in a
VBA macro.

out = MLStartDir(path) lets you catch errors when executing MLStartDir in a VBA
macro. If MLStartDir fails, then out is a string containing error code. Otherwise, out is
0.

Input Arguments

path

Path to the new MATLAB working folder after startup.

Output Arguments

out

0 if the command succeeded. Otherwise, a string containing error code.

4 Functions — Alphabetical List

4-44

Examples

Specify MATLAB Working Folder

Set the MATLAB working folder to d:\work after startup:

MLStartDir (“d:\work”)

Specify MATLAB Working Folder That Includes Spaces

If your folder path includes a space, embed the path in single quotation marks within
double quotation marks.

Set the MATLAB working folder to d:\my work:

MLStartDir (“'d:\my work'”)

More About

Tips

• This function does not work like the standard Microsoft Windows Start In setting,
because it does not automatically run startup.m or matlabrc.m in the specified
folder.

• The working folder changes only if you run MATLAB after you run this function.
Running this function while MATLAB is running does not change the working folder
for the current session. In this case, MATLAB uses the specified folder as the working
folder when it is restarted.

See Also
MLAutoStart

Introduced in R2006b

 MLUseCellArray

4-45

MLUseCellArray

Toggle MLPutMatrix to use MATLAB cell arrays

Syntax

MLUseCellArray(flag)

MLUseCellArray flag

out = MLUseCellArray(flag)

Description

MLUseCellArray(flag) specifies whether MLPutMatrix must use cell arrays for
transfer of data (for example, dates). When the Spreadsheet Link EX software is
installed, the default is "no". If you change the value of MLUseCellArray to "yes", the
change remains in effect the next time a Microsoft Excel session starts. Use this syntax
when working directly in a worksheet.

MLUseCellArray flag specifies whether MLPutMatrix must use cell arrays for
transfer of data. Use this syntax in a VBA macro.

out = MLUseCellArray(flag) lets you catch errors when executing
MLUseCellArray in a VBA macro. If MLUseCellArray fails, then out is a string
containing error code. Otherwise, out is 0.

Input Arguments

flag

Either "yes" or "no".

Specify "yes" to automatically uses cell arrays for transfer of data structures. Specify
"no" to stop using cell arrays for transfer of data structures.

Default: "no"

4 Functions — Alphabetical List

4-46

Output Arguments

out

0 if the command succeeded. Otherwise, a string containing error code.

Examples

Stop Using Cell Arrays When Transferring Data Structures

Cancel automatic use of cell arrays for easy transfer of data:

MLUseCellArray("no")

See Also
MLPutMatrix

Introduced in R2007a

 MLUseFullDesktop

4-47

MLUseFullDesktop

Specify whether to use full MATLAB desktop or Command Window

Syntax

MLUseFullDesktop(flag)

MLUseFullDesktop flag

out = MLUseFullDesktop(flag)

Description

MLUseFullDesktop(flag) sets the MATLAB session to start with the full desktop or
Command Window only. Use this syntax when working directly in a worksheet.

MLUseFullDesktop flag sets the MATLAB session to start with the full desktop or
Command Window only. Use this syntax in a VBA macro.

out = MLUseFullDesktop(flag) lets you catch errors when executing
MLUseFullDesktop in a VBA macro. If MLUseFullDesktop fails, then out is a string
containing error code. Otherwise, out is 0.

Input Arguments

Default:

flag

Either "yes" or "no".

Specify "yes" to start full MATLAB desktop. Specify "no" to start the Command
Window only.

Default: "yes"

4 Functions — Alphabetical List

4-48

Output Arguments

out

0 if the command succeeded. Otherwise, a string containing error code.

Examples

Start Only the Command Window

Set the MATLAB session to start with the command window only:

MLUseFullDesktop("no")

See Also
matlabinit | MLClose | MLOpen

Introduced in R2006b

